Pasting polynomials together

Sarah C. Koch University of Michigan

The Basilica

San Marco Cathedral Venice, Italy

The Rabbit

 $p(z) = z^2 + (-0.1226 + 0.7449i)$

The Corabbit

 $p(z) = z^2 + (-0.1226 - 0.7449i)$

A dendrite

 $p(z) = z^2 + i$

Kokopelli

$p(z) = z^2 - 0.156 + 1.302i$

Cokokopelli

$p(z) = z^2 - 0.156 - 1.302i$

$p(z) = z^{2} + (0.5 + i)$ A Cantor set

Keeping track of shapes

 $z^2 - 1$ basilica

 z^2

 $z^2 + (-0.1 + 0.75i)$ rabbit

 $z^2 + (-0.1 + 0.75i)$ corabbit

 $z^2 - 0.156 + 1.302i$ kokopelli

 $z^2 + i$ dendrite

Parameter space: coloring scheme?

c plane

 $z^2 - 1$ basilica $z^2 + (-0.1 + 0.75i)$ rabbit $z^2 + (-0.1 + 0.75i)$ corabbit $z^2 - 0.156 + 1.302i$ kokopelli $z^2 + i$ dendrite

 z^2

The Mandelbrot Set

the basilica 📈

the rabbit

The *mating* of the basilica and the rabbit

 $F(z) = \frac{2z^2 + 1 - \sqrt{3}}{2z^2 - 2}$

hmm... let's see that again.

Which quadratic polynomials can be mated?

Theorem. (Tan Lei, Rees, Shishikura) Let $p: z \mapsto z^2 + c_1$ and $q: z \mapsto z^2 + c_2$ be postcritically finite. Then p and q can be mated if and only if c_1 and c_2 do not belong to conjugate limbs of the Mandelbrot Set.

A shared mating

Arnaud Cheritat polynomial matings: <u>https://www.math.univ-</u> toulouse.fr/~cheritat/MatMovies/

Software:

Fractal Stream Dynamics Explorer Mandel

An Introduction to Chaotic Dynamical Systems Second Edition

Robert L. Devaney

Dynamics in one complex variable by John Milnor An introduction to chaotic dynamical systems by Robert Devaney

Classes:

Books:

complex analysis, topology, differential geometry, algebraic topology

Thank you!